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A B S T R A C T

A novel approach of combining regionalization and satellite observations of various hydrological variables were
employed to significantly improve prediction of streamflow signatures at “geopolitically ungauged” basins.
Using the proposed step-wise physiography and climate-based regionalization approach, the model performance
at ungauged basins reached 80% of performance of locally calibrated parameters and significantly outperformed
the global regionalization parameters. The proposed water level based flow correlation was found to help di-
agnose models and outperform the existing performance metrics of simulated water levels at ungauged basins.
The study also set up the first multi-national, multi-catchment hydrological model in the Greater Mekong region,
the top global biodiversity and major disaster risk hotspot in the world through sequential and iterative re-
finement of the existing global hydrological model. New model setup or existing models in the poorly-gauged
and ungauged basins could benefit from the proposed approach to predict and evaluate models at ungauged
basins.

1. Introduction

Adequate and reliable information about streamflows are im-
perative for effective management of water resources. Streamflow data
are required for practical applications such as the design of drainage or
water supply infrastructure, as well as planning short-term and long-
term water use with respect to changes of land use and climate.
However, only a small fraction of catchments in any part of the world,
possess a stream gauge (Blöschl et al., 2013). Additionally, the number
of actively gauged stations has in recent years declined significantly due
to reduced government funds for monitoring networks (Ad Hoc Group
et al., 2001; Shiklomanov et al., 2002). Given the scarcity of operational
gauging stations, the availability of streamflow data is becoming in-
creasingly limited.

In addition to the global trend of declining streamflow gauges, ac-
cessing existing data is often more difficult in transboundary river
catchments. Unfollowing the human-defined political or administrative
boundaries, transboundary river basins account for roughly one-half of

the earth’s land surface, generate about 60% of the global freshwater
flow and are home to nearly 40% of the world’s population (UNEP-DHI
& UNEP, 2016). At least one transboundary water body exists in almost
every non-island state in the world. Even if international agreements
enabling data and information sharing among states exist in principle,
in practice data sharing is often complex in transboundary waters
(Gerlak et al., 2011). For example, in the Okavango River basin, al-
though there is agreement between Namibia and Botswana on sharing
river flow data, it is debated how to validate the accuracy of shared data
(Turton et al., 2003). Or in the case of the Jordan river basin, where
there are asymmetric power relations, intentionally ambiguous me-
chanisms were designed by stronger states to allow no actual data ex-
change while diffusing domestic opposition (Fischhendler, 2008). These
transboundary river basins are thus considered as “geopolitically un-
gauged” where data observation networks may exist but data are un-
available for use due to geopolitical constraints (Kibler et al., 2014).

Since streamflow observations are not available and accessible for
all locations, hydrological models often rely on regionalization
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approaches to transfer information from gauged to ungauged catch-
ments (see Beck et al., 2016; Razavi and Coulibaly, 2012; Blöschl et al.,
2013; Parajka et al., 2013; Hrachowitz et al., 2013; He et al., 2011 for
reviews). There are different regionalization approaches with their re-
spective advantages and limitations. In general, approaches that
transfer calibrated parameter sets with respect to their climatic and
physiographic similarity, and/or simultaneously calibrate multiple
catchments with similar characteristics, performed better than other
approaches (Arheimer et al., 2020; Beck et al., 2016; Donnelly et al.,
2016; Garambois et al., 2015; Kim and Kaluarachchi, 2008; Parajka
et al., 2007; Sellami et al., 2014). Nonetheless, it is of question if this
approach would work in the case of process-based distributed hydro-
logical models, which inevitably have a large number of parameters.

Process-based distributed hydrological models, which have para-
meters linked to physiography and/or climate in the context of multi-
catchment modeling approach (including both gauged and ungauged
basins), is a type of regionalization (Abbaspour et al., 2015; Arheimer
et al., 2020; Donnelly et al., 2016; Hossain et al., 2017; Mohammed
et al., 2018). Most of these studies used physiography-linked parameter
sets, except the most recent study by Arheimer et al. (2020) that in-
cluded similarity in climate characteristics. Among them, the study by
Donnelly et al. (2016) explicitly evaluated physiography-linked para-
meter sets and concluded that they were useful for prediction at un-
gauged basins. Arheimer et al. (2020) included climate-linked para-
meter sets by assigning different potential evapotranspiration
algorithms for catchments characterized according to Köppen climate
classification. However, it is questionable if the choice of climate re-
gions based on Köppen classification was optimal due to no explicit
quantification of improvement in simulating streamflow.

The growing availability of spatially distributed remotely sensed
data and open global data sources, together with better computational
capacity and advanced methods to assure better data quality, has
brought the possibility of macroscale hydrological modeling at the
continental scale (e.g. Pechlivanidis and Arheimer, 2015; Abbaspour
et al., 2015; Donnelly et al., 2016) and the global scale (Arheimer et al.,
2020; Beck et al., 2016; Döll et al., 2003). However, it is known that
global scale hydrological models do not always have satisfactory per-
formance over all stations within their expansive domains, constraining
their application for management purposes. Furthermore, the evalua-
tion of model performance has been undertaken at gauged or pseudo-
gauged stations. Accordingly, it is of question how to discern at which
station model can satisfactorily capture the observed hydrological re-
gimes. An innovative approach to evaluate model at ungauged basins
without using streamflow data is thus required.

While streamflow data are less available and accessible, water level
or stream stage data are more widely obtainable because there is less
investment of people and equipment to measure them and increasingly
more access and coverage of stage data derived from satellite altimetry
become available (Okeowo et al., 2017; Lee et al., 2009). Water level
observations either from in-situ observations or derived from satellite
altimetry have been increasingly used to calibrate hydrological models
towards replacing streamflow information for poorly and ungauged
basins (Getirana, 2010; Sun et al., 2012; Lindström, 2016; Jian et al.,
2017) and used innovatively to estimate important hydrological in-
formation for Mekong river basin (Chang et al., 2019; Kim et al., 2019).
However, the evaluation of hydrological models using the existing
performance metrics based on water level only can yield inaccurate
results due to inherent numerical problems (Lindström, 2016; Jian
et al., 2017). Therefore, it is vital to develop methods that more ef-
fectively utilize water level data, where available, for evaluation of
model at ungauged basins as a surrogate for streamflow.

Similar flow dynamics (mean discharge, relative flow variability
and catchment response rates) have been found between catchments
having high spatial correlation of daily streamflow (p > 0.9), rather
than catchments having spatial proximity (Archfield and Vogel, 2010;

Betterle et al., 2017; Betterle et al., 2019). Instead of using streamflow
for ungauged catchments (receptor), water level observations can be
used to find the most highly correlated gauged catchments (donor).
This approach is named as water level based flow correlation in this
study. If a model can simulate similar correlation to the observed cor-
relation patterns between gauged (using streamflow) and ungauged
(using water level), it is hypothesized that performance of simulated
ungauged catchments is as similar as gauged catchments. It is thus
worth exploring whether this hypothesis is valid.

Accordingly, the overarching goal of this work is to develop and test
a new method of using satellite observations and regionalization to
improve the prediction of streamflow at “geopolitically ungauged”
basins using Hydrological Predictions for the Environment (HYPE)
semi-distributed hydrological model (Lindström et al., 2010). A first
subcontinent-scale hydrological model would be setup for the Greater
Mekong region, which is a global biodiversity and major disaster risk
hotspot but poorly simulated in the existing global hydrological models,
constraining their use for pressing management purposes (Tordoff et al.,
2012; Dilley et al., 2005; Du et al., 2018). The region covers 13 river
basins, of which six international river basins make up 90% of total
area, passing the entire territory of Vietnam, Laos, Cambodia and parts
of China, Thailand and Myanmar (Fig. 1). The specific objectives of this
work are to: (i) examine how far a multi-catchment HYPE model using
global open data sources including satellite observations can predict
flow signatures for gauged catchments in the region; (ii) identify
whether physiography and climate based regionalized parameters could
improve prediction of streamflow signatures at ungauged catchments;
(iii) determine whether water level based flow correlation could help to
evaluate model performance at ungauged catchments.

2. Data

2.1. Input dataset for HYPE model

The study used HYPE semi-distributed hydrological model, which
has been examined in extensive catchment types worldwide (Arheimer
et al., 2020). In this study, HYPE for the Greater Mekong region is
named as Greater Mekong HYPE (GM-HYPE), which has been devel-
oped incrementally, and the current final version 1.3 (GM-HYPE v1.3)
was based on the first version (GM-HYPE v1). GM-HYPE v1 was the
result of a long-standing collaboration between Swedish Meteorological
Hydrological Institute (SMHI) and National Center for Water Resources
Planning and Investigation (NAWAPI). To be comparable with the
World-Wide HYPE model version 1.3 (WWH v1.3, Arheimer et al.,
2020), the catchment model HYPE for the Greater Mekong region used
the same topography and hydrological databases (Table 1). Ad-
ditionally, supplementary forcing and gauging data were used. In ad-
dition to Hydrological Global Forcing Data (HydroGFD) precipitation
and HydroGFD temperature (Berg et al., 2018), Multi-Source Weighted-
Ensemble Precipitation (MSWEP) precipitation, Tropical Rainfall Mea-
suring Mission (TRMM 3B42) precipitation and National Centers for
Environmental Prediction Climate Forecast System version 2 (NCEP
CFSv2) temperature, which have been examined to perform well in the
region, were added (Mohammed et al., 2018; Tang et al., 2019). Since
different forcing datasets have different spatial resolutions (Table 1),
the nearest grid approach was used to assign the characteristics to each
sub-catchment. Considering Vietnam to be the country that needs to
monitor water resources outside of the country (given 60% of water is
generated outside of the country; World Bank, 2019; Du et al., 2016),
any streamflow observations inside Vietnam are named as gauged
catchments (used for calibration) whereas the observations outside of
Vietnam, where available, are named as “geopolitically ungauged”
catchments (gauged but not used for calibration). Sources of the addi-
tional ground observations of streamflow, water level and precipitation
were supplemented by project partners to calibrate and validate the
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model performance in the region (see Fig. 1 for their locations. Details
of stations’ names, locations and basic information are provided in
Table Supplementary 1).

2.2. Radar altimetry data

The heights of the earth surface every 35 days can be determined
using the two-way travel time of radar pulses by Envisat Radar
Altimeter 2 (RA 2) during period from August 2002 to October 2010
(see Fig. 2 and Table 2 for their locations). Altimetric along-track data
v2.1 of the Envisat mission (CTOH_ENVISAT_2014_01) corrected by
CTOH (Centre de Topographie des Océans et de l'Hydrosphère, LEGOS,
France) were extracted and time series were generated using the au-
tomation algorithm developed in Okeowo et al. (2017). This algorithm
was based on K-means clustering for the automatic detection of outliers.
Their method was found to be computationally effective compared to
other methods, such as Kalman filter approach by Schwatke et al.
(2015) and applicable in the Mekong river basin (Kim et al., 2019b).

3. Methods

3.1. The multi-catchment hydrological model HYPE

HYPE is a process-oriented semi-distributed open-source model that
is developed and used operationally to deliver high-resolution model
predictions of water and nutrients (Lindström et al., 2010; Arheimer
and Lindström, 2013). Initially developed for use in Sweden, it has
more recently been used in applications in, for example, India
(Pechlivanidis and Arheimer, 2015), Europe (Donnelly et al., 2016),
and across the globe (Arheimer et al., 2020). The HYPE model code has
been developed since 2005 with a flexible approach to start with simple
process descriptions and further refine and increase complexity when
necessary (Lindström et al., 2005; Bergström, 1991; Beven, 2011). The
model structure is based on a multi-catchment approach allowing si-
multaneous modeling of multiple river basins, with each river basin
divided into multiple subbasins and each subbasin further divided into
hydrologic response units (HRUs). Each HRU can be divided vertically

Fig. 1. The study domain of Greater Mekong, covering thirteen river basins, six of which are international transboundary river basins (red colored legends) (including
the entire territory of Vietnam, Laos, Cambodia and part of China, Thailand and Myanmar) whereas the remaining river basins are located inside Vietnam. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Data description and sources used in the Greater Mekong HYPE project.

Data type Source and resolution Reference

Topography (Flow accumulation, flow direction,
digital elevation, river width)

SRTM (3 arcsec) USGS
HYDRO1k (30 arcsec) UGGS
GWD-LR (3 arcsec) Yamazaki et al., 2014

Floodplains and Lake Global Lake and Wetland Database (GLWD) Lehner and Döll, 2004
Land Cover characteristics ESA CCI Landcover v1.6.1 epoch 2010 (300 m) Lehner et al., 2011; ESA Climate Change Initiative –

Land Cover project
Precipitation MSWEP (0.25° grid, 1979 – 2014) Beck et al. 2017

TRMM 3B42 (0.25° grid, 2001 – 2015) Huffman et al., 2006
HydroGFD (0.5° grid, 1961 – 2015) Berg et al., 2018
In-situ precipitation stations in Vietnam (176 stations, 1975 – 2006) BIG DREAM project (VINIF.2019.DA17)

Temperature HydroGFD (0.5° grid, 1961 – 2015) Berg et al., 2018
NCEP CFSv2 (0.25° grid,1979 – 2014) Saha et al., 2011

Potential Evapotranspiration MOD16A2 (8-day 1 km, 2001 – 2010) Mu et al., 2011
Streamflow observations in Vietnam (Gauged) (used

for calibration)
19 Stations (daily, 1980–2010) BIG DREAM project (VINIF.2019.DA17)

Observations of streamflow and water level in Mekong
(“geopolitically ungauged”) (used for
independent evaluation)

12 Stations (daily, 1980 – 2007) Mekong-SERVIR project (ADPC)

Envisat-derived Water Level (Envisat-“ungauged”*)
(used for independent evaluation)

17 Virtual Stations (daily every 35 days, 2002–2009) Okeowo et al., 2017; Lee et al., 2009; Chang et al.,
2019; Kim et al., 2019b; CTOH_ENVISAT_2014_01

*Envisat-“ungauged” catchments are catchments that have virtual stations of Envisat-derived water level but mostly have no observations of streamflow (except 3
catchments that are located in “geopolitically ungauged” catchments) (more explanations are provided in Table 2).

Fig. 2. Spatial distribution of virtual stations (red triangles) and “geopolitically ungauged” stations (white circles) employed in the study (Fig. 2a). The black lines
denote the ground tracks of Envisat altimetry. Fig. 2b shows the names of “geopolitically ungauged” stations. Time series of river elevation at three VS’s are shown in
the panels on the right (Fig. 2c, 2d, 2e) (time series of all locations are not presented for reason of brevity). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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into three maximum distinct soil layers (normally the top layer has a
thickness of around 25 cm, the second of 1–2 m and the third can be
deeper to account for ground water) (Bui et al., 2011). The model is
forced by precipitation and temperature at either daily or hourly tem-
poral resolution, and its calculation starts at HRUs and is then ag-
gregated to subbasin level. HYPE calculates flow paths in the soil based
on snow melt, evapotranspiration, surface runoff, infiltration, percola-
tion, macropore flow, tile drainage and outflow to the stream from soil
layers when water content is above field capacity. Different algorithms
are provided to calculate snow melt, evapotranspiration, and infiltra-
tion according to the physical characteristics of the modeled catch-
ments. The runoff from the land classes is then routed through the
network of rivers and lakes to generate river flow, which could be
dampened due to effect of lakes and reservoirs. HYPE can also simulate
the effect of floodplains, which is crucial for large river systems and
their deltas (Andersson et al., 2017), and it can also simulate the
transport and concentration of nutrients in both soil, rivers and lakes
(Lindström et al., 2010). In addition to natural dynamics, the model can
simulate simplified water management schemes, such as regulated re-
servoirs (hydropower), and irrigation. There are several parameters
used in HYPE that can be constrained in a stepwise manner using dif-
ferent types of observed data (Arheimer and Lindström, 2013). The
parameters may be soil type dependent (e.g., field capacity), land cover
dependent (e.g., evapotranspiration coefficient) or general across the
domain (e.g., river routing parameters). Parameters, which are linked
to physiography and/or climate rather than to a specific catchment, are
thus assumed to be transferable to ungauged sites. More details on the
HYPE model, including visual schematic diagram, can be found in the
web-based documentation (http://www.smhi.net/hype/wiki/) and
Lindström et al. (2010).

The HYPE model has explicit lake routing, including two types of
lakes, which are local lakes and outlet lakes. Local lakes, which are
located inside the subbasin, only receive a portion of local surface
runoff and then flows to main river of the same subbasin. Outlet lakes,
which are located near the main river, receive both local runoff (after it
has passed local lakes) and the river flow from upstream subbasins.
Each lake can be set with an individually defined depth. The outflow
from lakes (when water level is above a defined threshold) can be either
determined by a general rating curve or a specific rating curve.

The rating curve for a lake outlet is written as:

=q k w w( )p
0

Thus, water level can be also seen as a transformation of stream-
flow:

=w w q k( ) ( / )o
p1/

where q is the outflow or streamflow (m3/s), w is water level (m), w0 a
threshold (m), k p are rate and exponent of rating curve parameters
(Lindström, 2016). When w0 is known, (w – w0) is equal to water depth.

Lake water levels, which are easier and cheaper to be measured, are
mainly used with the purpose of estimating streamflow through es-
tablished rating curves. Meanwhile, there are a lot of basins that have
no observations of streamflow. Therefore, Lindström (2016) tested if
HYPE can be calibrated using water level data instead of streamflow.
The study found that water levels could be useful for calibration of
hydrological models without measuring streamflow by establishing a
traditional rating curve but using a constant rating curve exponent. His
suggestion of using p= 2 while adjusting k and w0 appropriately for all
lakes resulted in a reasonable agreement with observed daily water
level records based on the assumption of parabolic lake outlets, which
agreed with the previous study by Maidment (1992).

Accordingly, to integrate river elevation derived from Envisat alti-
metry into HYPE, modeled streamflow must be converted to water
level. Using outlet lake routine from HYPE, negligibly small outlet
lakes, which have inflow equal to outflow (no storage capacity to affect
streamflow) were added in subbasin, where there is either in-situ ob-
servations of streamflow and water level or Envisat-derived river ele-
vation. To reduce uncertainty of estimating water depth, in addition to
constant p, constant k = 100 and w0 = 0 were used, so equation (2)
becomes =w q( /100)1/2. Since the proposed method (water level based
flow correlation, explained in section 3.3) emphasized the temporal
dynamics rather than the true magnitude of a variable, it was not ne-
cessary to estimate the exact water depth. Simulated w would be
compared with either in-situ observations of water level at “geopoliti-
cally ungauged” catchments or Envisat-derived water elevation at
Envisat-“ungauged” catchments. Envisat-“ungauged” catchments are
catchments that have virtual stations of Envisat-derived water level but
mostly have no observations of streamflow (except 3 catchments that
are located in “geopolitically ungauged” catchments) (Table 2).

3.2. Grouping catchments using climatic indexes

Similar seasonal water balance patterns between catchments, which
could be explored based on three climatic indices alone, i.e., climatic

Table 2
List of seventeen virtual stations (VSs) with Envisat pass numbers and their location.

No. VS Pass number Location (Lat/Lon) Located in “Geopolitically ungauged” catchments?

1. VS 101 737 20.195°N/100.472°E No – Envisat-“ungauged” catchment (EU101)
2. VS 102 651 20.025°N/101.950°E No – Envisat-“ungauged” catchment (EU102)
3. VS 103 651 19.817°N/101.994°E No – Envisat-“ungauged” catchment (EU103)
4. VS 104 565 18.345°N/103.796°E No – Envisat-“ungauged” catchment (EU104)
5. VS 105 107 18.151°N/103.115°E No – Envisat-“ungauged” catchment (EU105)
6. VS 106 651 17.980°N/102.443°E No – Envisat-“ungauged” catchment (EU106)
7. VS 107 21 17.531°N/104.699°E Yes – (GU25) Nakhom Phanom Station (EU107)
8. VS 108 21 17.137°N/104.789°E No – Envisat-“ungauged” catchment (EU108)
9. VS 109 21 16.279°N/104.990°E Yes – (GU27) Savannakhek Station (EU109)
10. VS 110 937 14.044°N/106.944°E No – Envisat-“ungauged” catchment (EU110)
11. VS 111 479 13.856°N/106.269°E No – Envisat-“ungauged” catchment (EU111)
12. VS 112 866 13.845°N/105.986°E Yes – (GU31) Stung Treng Stations (EU112)
13. VS 113 322 13.842°N/106.709°E No – Envisat-“ungauged” catchment (EU113)
14. VS 114 866 13.372°N/105.881°E No – Envisat-“ungauged” catchment (EU114)
15. VS 115 939 13.310°N/107.111°E No – Envisat-“ungauged” catchment (EU115)
16. VS 116 21 12.270°N/105.911°E No – Envisat-“ungauged” catchment (EU116)
17. VS 117 565 11.933°N/105.276°E No – Envisat-“ungauged” catchment (EU117)

Note: “Geopolitically ungauged” catchments are catchments that actually have historical observations of daily streamflow and water level for only cross-validating
the proposed method (not used at all for calibration) (Table 1). Envisat-“ungauged” catchments are catchments that have virtual stations of Envisat-derived water
level but mostly have no observations of streamflow (except 3 catchments that are located in “geopolitically ungauged” catchments). Among 17 Envisat-“ungauged”
catchments, 3 of them are located in “geopolitically ungauged” (shown in bold font), which can be validated with the actual streamflow observations.
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aridity, timing of seasonal precipitation, and a temperature-based
measure of snowiness, was found to provide a useful backdrop to the
signatures of streamflow variability over various time scales (daily to
decadal) and states (low flow to floods) (Berghuijs et al., 2014). This
study applied Berghuijs et al. (2014)’s approach to robustly group
catchments based on their similarity in climatic characteristics. Ac-
cordingly, two dimensionless indices that account for similar water
balances among catchments were calculated, namely the aridity index
and the seasonality index (snowiness is not considered in this study
since there is almost no snow impact in the study area).

Proposed by Budyko (1974), the aridity index is defined as:

= E
P

where E is the average potential evaporation rate (mm/day) and P is
the average precipitation rate (mm/day). This average is calculated
from 2002 to 2009, the same time period used to calibrate the model.
can range from 0 to infinity (in theory) with higher values associated
with more arid climate.

Here, it is assumed that the seasonal variability of precipitation and
air temperature can be modeled as simple sine curves (Milly, 1994;
Potter et al., 2005; Woods, 2009) as follows:

= +P t P t s( ) 1 sin 2 ( )
P

P

P

= +T t T t s( ) [sin( 2 ( ) )]T
T

T

where t is the time (days), s is a phase shift (days), τ is the duration
of the cycle under consideration (here, 365 days), P is the average
precipitation (mm/day), T is the average temperature (°C/day) over
same period 2002–2009, P and T are dimensionless seasonal ampli-
tudes, and the subscripts P and T stand for precipitation (mm/day) and
temperature (°C/day) respectively. P(t) is the precipitation rate (mm/
day) and T(t) is temperature (°C/day) as a function of t. Using a least
squares optimization, P and T were obtained for all individual 1120
catchments in the HYPE study domain.

Then, the seasonality index P was calculated using Woods (2009):

= sgn s s. ( ). cos( 2 ( ) )P P T
P T

where P indicates whether precipitation is in phase with the potential
evaporation and temperature regimes. The parameter P can range from
−1 to +1, with the former representing strongly winter-dominant
precipitation (P out of phase with T) and the latter showing strongly
summer-dominant precipitation (P in phase with T). P = 0 indicates
the uniform precipitation throughout the year.

3.3. Water level based flow correlation between gauged and “ungauged”
catchments

A measured correlation matrix (Pearson’s r correlation coefficient)
between daily in-situ water level of “geopolitically ungauged” catch-
ments and daily streamflow of gauged catchments was calculated to
find the most highly correlated reference gauged catchments to the
study “ungauged” catchments. Similarly, a measured correlation matrix
between Envisat-derived water level of “ungauged” catchments outside
of Vietnam and the daily streamflow of gauged catchments was also
computed. To examine the assumption that the correlation between two
daily streamflow series was similar to water level based flow correlation
between daily water level (either in-situ observations of water level or
Envisat-derived water level) and streamflow, a corresponding correla-
tion matrix between daily streamflow of “geopolitically ungauged”
catchments and daily streamflow of gauged catchments was made.
From previous studies on flow correlation, correlation coefficients

larger than 0.9 were recommended to consider as being highly corre-
lated catchments (Archfield and Vogel, 2010; Betterle et al., 2019).
Because there were less catchments considered in the study, r 0.7 was
selected as the threshold correlation coefficient. Because r was smaller
in the study, only catchments in the same climatic group (section 3.2)
were examined, to ensure they have similar climate characteristics.

3.4. Step-wise physiography and climate based regionalization at gauged
basins

For data-sparse regions, step-wise calibration approach was shown
to be a useful method to reduce the problem of equifinality of the final
model output (Andersson et al., 2017; Donnelly et al., 2016; Arheimer
and Lindström, 2013; Strömqvist et al., 2012). At each key process,
lumped calibration was carried out simultaneously for sub-groups of
gauged basins (representative gauged basins - RGBs) with upstream
areas dominated by a specific land-use or soil type. When calibration for
a specific group of RGBs is deemed satisfactory, the parameters for that
responding land-use or soil type can be kept constant and the next
parameters for another group can be calibrated using another set of
RGBs. The step-wise separation followed the hydrological pathways
through the landscape, starting with climate inputs (precipitation,
evapotranspiration), then subsequently moving downstream to soils
(infiltration, storage, runoff), then the rivers and lakes (routing and
storage). After each step, evaluation of model performance was un-
dertaken for all 19 gauged stations and the best performance parameter
set was used in the next step of the model refinement. The period
2002–2009 was selected as the calibrated period to analyze errors and
refine the model. This period was chosen because it aligned with the
availability of Moderate Resolution Imaging-Spectroradiometer
(MODIS) – derived potential evapotranspiration (PET) and Envisat-de-
rived water level. The earlier part of the simulation period (1991–2001)
was retained for independent validation at the same stations.

A key objective in calibrating the Greater Mekong-HYPE model was
to represent the main hydrological processes of all river basins.
Therefore, model evaluation and refinements primarily focused on
achieving satisfactory performance across the whole basin using con-
sistent descriptions rather than excellent performance at few locations.
The streamflow signatures to be evaluated in the study were the daily
and monthly specific streamflow (mm/day and mm/month), high flow
(5th percentile of daily specific flow in mm/day), low flow (95th per-
centile of daily specific flow in mm/day) and medium flow (50th per-
centile of daily specific flow in mm/day). These signatures were se-
lected because they are the most important and widely used signatures
of catchment runoff response to be applied in water resources planning
and environmental studies (Arheimer et al., 2020; Donnelly et al.,
2016) (Table 3).

The entire domain-scale performance was quantified by first cal-
culating key performance criteria for each of the above flow signatures
at each of the 19 streamflow gauges available inside Vietnam (Fig. 1),
and then computing summary statistics to describe model performance
across all locations. The model’s ability to simulate daily and monthly
streamflow at each gauge was quantified with standard metrics,

Table 3
Flow signatures evaluated in the study (Range estimated from 2002 to 2009
period).

Flow Signatures Description

MeanDailyQ (QDD) Mean daily specific flow in mm
MeanMonthlyQ (QMM) Mean monthly specific flow in mm
Q5 5th percentile of daily specific flow in mm
Q50 50th percentile of daily specific flow in mm
Q95 95th percentile of daily specific flow in mm
MeanDailyW (WDD) Mean daily water level in m
MeanMonthlyW (WMM) Mean monthly water level in m
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including the Kling-Gupta Efficiency (KGE) and its components r, , ,
which are directly linked with Pearson’s correlation coefficient, relative
error (RE) and relative error of standard deviation (RESD, variability
ratio) respectively (Gupta et al., 2009) (Table 4). For constraining PET
parameter values, absolute value of RE was used to find the best
agreements between modeled PET and MODIS-derived PET.

Both automatic and manual calibration approach were employed to
take advantage of strengths of both methods. The advantage of the
former is power and speed of computation and objective parameter
constraints. Nevertheless, it is unlikely to provide physically acceptable
parameter estimates, which are mostly addressed by highly labor-in-
tensive manual calibration (Boyle et al., 2000). The automatic approach
was the Differential Evolution Markov Chain (DEMC) method (Ter
Braak, 2006). DEMC allowed to examine parameter sensitivity, prob-
ability based uncertainty estimate and a better convergence towards the
global optimum. Two-step DEMC automatic calibration was

undertaken. Firstly, short runs (around 400 iterations) were done to
examine parameter sensitivity. Secondly, longer runs (with at least
1000 iterations) were undertaken for only sensitive parameters to allow
convergence to global optimum values. DEMC automation was then
followed by manual checks to ensure the physically acceptable para-
meter ranges and simulated hydrograph similar to the observed pat-
terns. Table 5 describes the model parameters to be calibrated and lists
the initial parameter values for each parameter. Other parameters were
kept as default as the baseline parameters from the first Greater Mekong
HYPE model version (GM-HYPE v1) (the same roughly calibrated
parameter sets of the first World-Wide HYPE model version 1.0 (WWH
v1.0, Arheimer et al., 2020).

Step-wise physiography and climate based regionalization frame-
work for estimating different groups of model parameter values in each
step were as follows:

Table 4
Performance metrics used in the study.

Performance metrics Equation/References Range Variables

KGE (Kling-Gupta Efficiency) = + +rKGE 1 ( 1) ( 1) ( 1)2 2 2 Negative Infinity to 1 (the closer to 1, the better
simulation)

QDD, QMM

(Gupta et al., 2009)
RE (Relative error) = =RE; ( 1). 100µs

µo
Infinity to Infinity (the closer to 0, the better simulation) QDD, QMM, Q5, Q50,

Q95
(Gupta et al., 2009)

RESD (Relative Error of Standard
Deviation)

= =RESD; ( ). 100s
o

Infinity to Infinity (the closer to 0, the better simulation) QDD, QMM

(Gupta et al., 2009)
Pearson’s r Correlation Coefficient =r cov xo xs

s o
( , ) −1 to 1 (the closer to −1 or 1, the better simulation) QDD, QMM, WDD, WMM

NSEW = +NSEW NSE
o

( 1)2
2

Negative Infinity to 1 (the closer to 1, the better
simulation)

WDD, WMM

(Lindstrom, 2016)
NSEanom

= =

=
NSE 1anom

t
nt xo t xo xs t xs

t
nt xo t xo

1{[ ( ) ] ( ( ) ]}2

1 [ ( ) ]2

Negative Infinity to 1 (the closer to 1, the better
simulation)

WDD, WMM

(Getirana, 2010)

Note. x represents the streamflow or water level time series. µ: the mean value of streamflow or water level time series. : the standard deviation of streamflow or
water level time series. The sub-indexes o and s are observed and simulated streamflow or water level time series, respectively. t is the time step (one month for this
application), nt is the total number of months.

Table 5
HYPE model parameter description, initial parameter range and Posterior parameter values.

Hydrological Process Parameter and description Initial Parameter
Range

Posterior parameter
values

Potential evapotranspiration lb: threshold soil water for activation of PET 0.9 0.9
kc5: crop coefficient for Penman-Monteith algorithm [0.9 – 1.4] [1.2 – 1.9]
alb: albedo for PET algorithms [0.12 – 0.23] [0.12 – 0.23]

Soil water storage and flow path (for
vegetated soil and land uses)

rrcs1: recession coefficient for uppermost soil layer 0.3 0.3
rrcs2: recession coefficient for lowest soil layer 0.03 0.015
rrcs3: recession coefficient for slope dependent 0.0002 0.0002
mperc1: maximum percolation capacity from soil layer 1 to soil layer 2 20 20
mperc2: maximum percolation capacity from soil layer 2 to soil layer 3 20 50
macrate: fraction for macro-pore/subsurface flow 0.3 0.4
mactrinf: threshold for macro-pore/subsurface flow 10 6
mactrsm: threshold soil water for subsurface and surface runoff 0.7 0.1
srrate: fraction for infiltration excess surface runoff (Horton overland flow) 0.04 0
wcwp1: wilting point as a fraction for uppermost soil layer 0.2 0.2
wcwp2: wilting point as a fraction for second soil layer 0.2 0.2
wcwp3: wilting point as a fraction for lowest soil layer 0.2 0.2
wcfc1: fraction of soil available for evapotranspiration for uppermost soil layer 0.15 0.15
wcfc2: fraction of soil available for evapotranspiration for second soil layer 0.15 0.15
wcfc3: fraction of soil available for evapotranspiration for lowest soil layer 0.15 0.15
wcep1: effective porosity as a fraction, for uppermost soil layer 0.04 0.015
wcep2: effective porosity as a fraction, for second soil layer 0.04 0.3
wcep3: effective porosity as a fraction, for lowest soil layer 0.04 0.4
srrcs: recession coefficient for saturated surface runoff (Dunne overland flow) [0.05 – 0.2] [0 – 0.4]

Seasonal water balances among
catchment groups

cevpcorr: correction factor for PET 0 0
rrcscorr: correction factor for soil recession coefficient 0 [-0.5 – −0.2]

Note. Posterior parameter values different from initial parameter range are shown in bold font.
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(1) For precipitation and temperature, different datasets of precipita-
tion and temperature were used with the baseline parameters from
WWH v1.0 (roughly calibrated model at global scale) without un-
dertaking any additional calibration to identify the optimal climate
forcing datasets for the region. Daily KGE was used to evaluate this
step. This model step after selecting the optimal climate data was
named as the Greater Mekong HYPE model version 1.0 (GM-HYPE
v1.0).

(2) PET parameter values (lb, kc5, alb: see Table 5 for description of
parameter values) were constrained using the absolute value of RE
between annually simulated PET and MODIS-derived PET. PET al-
gorithm selected in the study was Food and Agriculture Organiza-
tion (FAO) Penman-Monteith, which was integrated inside the
HYPE model (Allen et al., 1998; Monteith, 1965). This algorithm
was selected so that it was more comparable to MODIS-based PET,
which was also based on Penman-Monteith logic (Mu et al., 2011).
Two-step DEMC automatic calibration was undertaken to obtain the
optimal values for each RGB of each land cover type (10 main land
cover types were grouped from 36 European Space Agency (ESA)
Climate Change Initiative CCI v1.6 data, see details of land cover
description and grouping in Arheimer et al., 2020). Thirdly, manual
checks of parameter values for each group were made to ensure
their acceptable physical meaning. This model step after selecting
optimal parameter values was named as the Greater Mekong HYPE
model version 1.1 (GM-HYPE v1.1).

(3) Parameters related to soil storage, flow paths and runoff generation
(19 parameters provided in Table 5) were first optimally tuned by
two-step DEMC calibration with daily KGE used as the objective
function. Because all gauged and ungauged basins were mainly
vegetated areas, only parameters for vegetated soils were cali-
brated. The remaining parameters were kept as default. Following
automatic calibration, manual check was done to examine the
physical meaning of parameters, and hydrograph simulation of
other signatures (daily streamflow, Q95, Q5 and Q50). This model
step after selecting the optimal parameter values was named as the
Greater Mekong HYPE model version 1.2 (GM-HYPE v1.2).

(4) Each catchment group (section 3.2) was evaluated separately and
calibrated using regional correction parameters (cevpcorr, rrcscorr:
see Table 5 for description of parameter values) (Hundecha et al.,
2016). Two-step DEMC with daily KGE as the objective function
and manual checks were done for all flow signatures (daily
streamflow, Q95, Q5 and Q50). This model step after selecting the
optimal regional correction parameter values was named as the
Greater Mekong HYPE model version 1.3 (GM-HYPE v1.3).

3.5. Performance of regionalized parameters at ungauged basins

The performance of physiography and climate based regionalized
parameters was assessed with the following approach. At 12 “geopoli-
tically ungauged” to be used for independent evaluation (Fig. 3), KGE,
RE for daily streamflow, RE for Q95, Q5, Q50 were obtained by using
the following sets of parameters:

(1) Step-wise physiography and climate based regionalization para-
meters transfer from gauged catchments (par GM-HYPE v1.3)
(section 3.4).

(2) Global regionalization parameters from the WWH v1.3 (Arheimer
et al., 2020). This parameter set was forced with the same climate
data as the WWH v1.3 model (HydroGFD Precipitation and Tem-
perature).

(3) Locally calibrated parameters in the ideal situation where observed
streamflow were available for calibration (Step one to three of
section 3.4 without manual calibration so that selected parameters
can be objective).

The performance metrics from the three parameter sets were com-
pared to address research objective 2 (section 1) if the proposed re-
gionalization method could help improve prediction of streamflow
signatures at ungauged basins.

Fig. 3. Flow chart summarizing steps of proposed method in the study.
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3.6. Model evaluation at ungauged basins using water-level based flow
correlation

At 12 “geopolitically ungauged” and 17 Envisat-“ungauged” catch-
ments, which were assumed to have no observations of streamflow but
only water level, different performance metrics were used to examine if
water levels can be modelled with a satisfactory level of performance.
Water levels (e.g. modeled, in-situ, altimetry derived) are water heights
that include both water depths and mean heights of river beds with
respect to different vertical references. Mean heights of river beds,
however, are mostly unknown unless being surveyed with large fi-
nancial resources and manpower or estimated with high uncertainty.
Although Pearson’s correlation coefficient can capture temporal varia-
tion between modeled and recorded water levels, it could not evaluate
the bias errors between them. Thus, different performance metrics have
been developed to remove this bias. Instead of estimating differences
between observed and modeled variables, Getirana (2010) proposed
Nash-Sutcliffe efficiency for anomalies (NSEanom), which is a modified
NSE metrics to to calculate the differences between their anomalies.
Similarly, Lindström (2016) introduced Nash-Sutcliffe efficiency ad-
justed for bias (NSEW) to eliminate the bias between them (Table 4).
Nevertheless, due to numerical problems, these modified formulations
can yield inaccurate results because modeled water levels without un-
known mean heights of river beds are within ranges of few meters
whereas recorded water levels are within several hundred meters above
sea levels (Lindström, 2016). Therefore, in practice, it is recommended
to evaluate water depths. However, in ungauged or “geopolitically
ungauged” basins, in-situ data are scare.

Accordingly, this study proposed applying hydrologic similarity
theory (Betterle et al., 2017; Archfield and Vogel, 2010) by assuming
that the most highly correlated reference gauged catchments (using
daily streamflow) also have similar performance to that of the study
“ungauged” catchments (using water level). To use this method, first,

the modeled water levels of the “ungauged” catchments were evaluated
against recorded water levels using Pearson’s correlation coefficient,
NSEanom and NSEW. For in-situ water levels, evaluation was under-
taken at both daily and monthly time steps. For Envisat-derived water
levels, evaluation was performed at any day step that has recorded data
(one daily observation every 35 days). NSEanom and NSEW were used
only to examine if numerical problems of evaluating models based on
water levels existed. When only modeled water level had good corre-
lation with recorded water level (r 0.7), following steps were un-
dertaken. This condition ensured that the temporal variation of mod-
eled water levels against observations was captured. Secondly, the
modeled correlation between modeled water levels of the “ungauged”
catchments and modeled streamflow of the reference most highly cor-
related catchments was computed. If there was similar result between
modeled correlation and measured correlation (modeled correlation
can range from 0.5 to 0.9 compared to measured correlation), perfor-
mance of reference gauged catchment was assumed to be the perfor-
mance of “ungauged” catchment. To cross-validate this assumption,
performance of “ungauged” catchments against the historical observa-
tions of streamflow, where available, was evaluated and compared with
the assumption (Fig. 4).

4. Results

4.1. Catchment delineation and characteristics

The World Hydrological Input Set-up Tool (WHIST) developed by
SMHI (Swedish Meteorological and Hydrological Institute, developer of
HYPE model) was used to delineate catchment borders (Arheimer et al.,
2020). Consistent with the WWH v1.3, catchment delineation was de-
fined using the same approach according to the locations of gauging
stations in the river network (including 19 “gauged” stations and 12
“geopolitically ungauged”), the outlets of large lakes/reservoirs, and

Fig. 4. Model evaluation framework at “ungauged” catchments using water level based flow correlation method. Q and W represents daily or monthly streamflow
and water level time series, respectively. The subscripts s and o are simulated and observed time series respectively. The second subscripts 1 and 2 are “ungauged”
(either “geopolitically ungauged” or Envisat-“ungauged”) and their most highly correlated gauged catchments, respectively. Qo1 (if available) is not used in model
setup or calibration, but only used to cross-validate the assumption that performance of “ungauged” catchments is similar to that of the reference most highly
correlated gauged catchments. The expression “=” is understood as between +/- 0.2 (so modeled correlation can range from 0.5 to 0.9 compared to measured
correlation).
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seeking to reach an average catchment size of ~1,000 km2 (Arheimer
et al., 2020). As a result, the Greater Mekong region (~1,2 million km2)
was divided into 1,120 sub-catchments with an average size of
1,047 km2. Sub-catchments within low-lying areas with extensive
floodplains tended to have a larger size (average 3,600 km2), among
which the TonleSap basin had the largest size of 10,000 km2. The
outputs of catchment delineation were quality checked with station
metadata (obtained from governmental reports). 100% of the estimated
catchment areas were found to fall within +/- 5% of the areas reported
by these metadata. For lakes and reservoirs, in total, 15 lakes and 18
reservoirs (only lakes and reservoirs larger than 10 km2 recorded by
GLWD and GRanD were considered in this version) were identified.

Similar to WWH v1.3, HRUs represented a combination of land
cover characteristics and elevation, resulting in 169 HRUs (details of
HRUs can be found in Arheimer et al., 2020). Different hydrological
active soil depths were assigned for the HRUs, based on the variability
in vegetation, and elevation they represented as suggested by Troch
et al. (2009) and Gao et al. (2014) and currently used in WWH v1.3
(Arheimer et al., 2020). Similar to WWH v1.3, detailed description of
soil properties was not included in HYPE model to reduce number of
parameters. Nevertheless, five general distinct soil classes (including (i)
no soil (water), (ii) urban soil, (iii) rock (no texture), (iv) vegetated soil
and (v) irrigated soil) based on impermeable conditions and infiltration
of land covers were identified to describe the hydrological processes in
the region.

4.2. Grouping catchments using climatic indexes

Across all 1,120 catchments and during the 2002 to 2009 study
period, the aridity index ranged from 0.4 to 1.7 whereas seasonality
index ranges from −0.3 to 1. Accordingly, consistent with Berghuijs
et al. (2014), four catchment groups were made, including group (1):
Humidity ( 0.75) with Mild seasonality ( P 0.5); group (2): Hu-
midity ( 0.75) with High seasonality ( >P 0.5); group (3): Sub-hu-
midity ( >0.75) with Mild seasonality ( P 0.5); and group (4): Sub-
humidity ( >0.75) with High seasonality ( >P 0.5) (Table 6). Fig. 5
shows the geographic spread and organization of four catchment groups
obtained from this classification approach (See Figure Supplementary 2
for spatial distribution of all catchments based on group classification).
Most catchments having historical streamflow observations (both
gauged and ungauged) were classified as group 3 or group 4. Catch-
ments of group 1 were mostly located near the coastal area with
stronger humidity and more wet-season dominant precipitation.
Catchments of group 3 were located mostly in the southwest of the
region with less humidity and less seasonal water variability. Catch-
ments of group 4 were located mostly in the northwest of the region
with less humidity and more dry-season dominant precipitation.

Grouping catchments using climatic indexes could provide a robust
reference to further regionalize parameters for each climate group. This
study adapted a simple regional calibration approach, following
Hundecha et al. (2016). After step-wise calibration of the model for all

catchments, we evaluated the model for each catchment group to find
out which signatures need to be refined and then performed regional
calibration separately by using group-specific correction parameters. It
should be noted that only catchment group 1, 3 and 4 could be cali-
brated and validated whereas catchment group 2 had no validation
because there were no gauged stations for this group.

4.3. Water level based flow correlation between gauged and “ungauged”
catchments

Fig. 6 validates the assumption that water level based flow corre-
lation using daily observed in-situ water levels and streamflow had si-
milar results to the correlation using both daily observed streamflow
observations. In the case of Envisat-derived water levels, because there
were less observations (one daily observation every 35 days), the cor-
relation coefficient became slightly smaller but the difference was
negligible. Accordingly, for the “geopolitically ungauged” and Envisat-
“ungauged” catchments in catchment group 3, Talai (G18) was found to
be the reference most highly correlated gauged catchment. For the
“geopolitically ungauged” and Envisat-“ungauged” catchments in
catchment group 4, LaoCai (G2), LaiChau (G4), YenBai (G6), Xala (G9)
were the reference most highly correlated gauged catchments.

4.4. Step-wise physiography and climate-based regionalization at gauged
basins

4.4.1. Baseline model performance (GM-HYPE v1.0)
Six sets of precipitation and temperature data were used to identify

the most appropriate climate inputs for the model. Among them,
HydroGFD had the coarsest resolution (0.5° grid) whereas MSWEP,
TRMM and NCEP were gridded at had 0.25° resolution. There were 176
in-situ precipitation stations to examine the quality of different climate
data inputs of the model. The period 2000–2006 was selected to ex-
amine their correlation as it was the period that all datasets were
available. In terms of magnitudes, it was found that HydroGFD and
TRMM precipitation datasets overestimated during wet months (5%
and 7% respectively) and underestimated during dry months (13% and
5% respectively) compared to the in-situ precipitation, resulting in
weaker correlation with in-situ precipitation (0.65 and 0.53 respec-
tively) (Table 7). MSWEP had smaller bias (less than 1% for the entire
year) and stronger correlation with in-situ precipitation. There was,
unfortunately, no in-situ temperature dataset to compare with Hy-
droGFD and NCEP. Monthly average temperature from HydroGFD was
larger than monthly average NCEP (Fig. 7).

Using the initial default parameter set WWH v1.0 with different sets
of climate data, no significant difference in model performance was
found between them. Any temperature dataset combined with the same
precipitation dataset resulted in almost similar performance. Among
the precipitation datasets, MSWEP led to the highest model perfor-
mance, followed by HydroGFD and TRMM. Since the MSWEP pre-
cipitation and NCEP temperature datasets had better resolution (both at

Table 6
Catchment groups using climatic indexes.

Group Description Total catchments Available observations within

Gauged catchments “Geopolitically ungauged” catchments Envisat-“ungauged” catchments

1 Humidity with Mild Seasonality 54 4 0 0
2 Humidity with High Seasonality 68 0 0 1
3 Sub-humidity with Mild Seasonality 322 5 3 9
4 Sub-humidity with High Seasonality 680 10 9 7

Note: Humidity ( 0.75); Sub-humidity ( >0.75); Mild seasonality ( P 0.5); High seasonality ( >P 0.5).
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0.25°), this set of forcing data was selected as the climate input data to
be used for the baseline model (GM-HYPE v1.0) (Table 8).

4.4.2. Refining potential evapotranspiration (GM-HYPE v1.1)
Evaporation is a significantly important process in all river basins in

Vietnam, accounting for around 50% of precipitation on average
(Nguyen, 2005). Given the importance of evaporation in the region and
large errors of streamflow variability in many locations of the baseline
model, calibration was undertaken to estimate PET – the upper limit of
evaporation in the model. Among three PET related parameters, land
use dependent parameter (kc5) was found to be sensitive. The posterior
kc5 was found to reduce relative volumetric errors (RE) between
modeled PET and MODIS-derived PET by 40% compared to initial kc5
value (Table 5). With this posterior kc5 values, model performance for
all flow signatures significantly improved over all stations, particularly
for KGE (from 0.3 to 0.47 for daily streamflow). In this model version,
nevertheless, low flows were significantly underestimated while high
flow were overestimated, requiring refinement of the soil storage and
flow paths process (Fig. 8).

4.4.3. Refining soil storage and flow paths (GM-HYPE v1.2)
The GM-HYPE v1.1 model displayed a quick and peaky response of

streamflow to rainfall events, resulting in the underestimation of low

flows and the overestimation of high flows (Fig. 9). DEMC automation
found the sensitive parameters that needed to be calibrated. They were
parameters governing the soil porosities (wcep1, wcep2, wcep3), per-
colation (mperc2), subsurface runoff and surface runoff (macrate,
mactrinf, mactrsm, rrcs2). Parameters of the GM-HYPE v1.1 model
represented significantly little soil storage, and high recession coeffi-
cients. Therefore, soil related parameters were adjusted to increase soil
storage capacity, more infiltration and lower recession coefficients for
subsurface runoff. In addition, runoff components (Horton overland
Flow, Dunne overland flow, subsurface flow) for different soil classes
were unreasonable compared to Dunne theory (Dunne, 1978; Li et al.,
2014). Accordingly, srrcs (Dunne overland flow related parameter) and
srrate (Horton overland flow related parameter) were manually cali-
brated so that Horton overland flow dominated in urban and bare soil
class whereas subsurface runoff and Dunne overland flow dominated in
vegetated soil class. Refining these descriptions helped to maintain
physical meaning of parameters, while significantly improving overall
simulated flow signatures for all gauged catchments during both the
calibration and validation period. For instance, for the calibration
period, compared to the GM-HYPE v1.1 model, the KGE for daily
streamflow improved from 0.47 to 0.7. On the other hand, volumetric
errors of low flows significantly reduced to −27% from −95% and
high flow from 35% to 1.7% (Fig. 8).

Fig. 5. The geographic distribution of all 31 evaluated catchments (gauged catchments inside Vietnam boundary and “geopolitically ungauged” catchments outside
of Vietnam) into 4 climatic catchment groups.
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4.4.4. Refining seasonal water balances among catchment groups (GM-
HYPE v1.3)

The model GM-HYPE v1.2 had an overall satisfactory performance
for both daily and monthly streamflow time series in both the cali-
bration and validation periods (KGE for daily streamflow was above
0.5). However, the low flow signature (Q95) was underestimated for
few stations. In the model GM-HYPE v1.2, the global physiography-
based parameters, which were based on soil and land cover char-
acteristics of catchments, were used for all catchments. Evaluating the
model GM-HYPE v1.2 for each catchment group (only 3 groups having
gauged stations), the global physiography-based parameters were more
suitable for catchment group 3, whereas low flow signatures for both
catchment groups 1 and 4 were still underestimated (Fig. 10). Catch-
ment group 1 with humidity and mild seasonality has more wet-season

dominant storage variation whereas catchment group 4 with sub-hu-
midity and high seasonality has more dry-season dominant storage
variation (Berghuijs et al., 2014). Accordingly, various correction fac-
tors (evapotranspiration and recession coefficients) were used to si-
multaneously consider the variety of climate characteristics between
catchments (Hundecha et al., 2016). In a trial and error, the correction
factor for the soil recession coefficient (rrcscorr) has resulted in im-
provement for the low flow signatures for group 1 and group 4 for both
calibration and validation periods whereas other parameter (cevpcorr)
did not result in any improvement.

4.5. Performance of regionalized parameters at ungauged basins

Table 9 summarizes the performance in terms of KGE, RE for daily
streamflow, RE for Q5, Q95, Q50 obtained in 12 “geopolitically un-
gauged” evaluation catchments using physiography-based regionalized
parameters (par GM-HYPE v1.2), physiography and climate based re-
gionalized parameter sets from gauged catchments (par GM-HYPE
v1.3), global regionalization parameter sets (par WWH v1.3) and lo-
cally calibrated parameter sets. Similar to Arheimer et al. (2020), al-
though global regionalization parameters could characterize spatial
variability of flow signatures across the globe, they had difficulties in
capturing low flows, particularly in tropical catchments. The difference
between physiography-based regionalized parameters and physio-
graphy and climate-based regionalized parameters was not significant.

Fig. 6. Matrices show Pearson’ correlation coefficient between gauged catchments (horizontal positions: G1 → G18 using daily streamflow) and “ungauged”
catchments (vertical positions, including “geopolitically ungauged” catchments: GUQ20 → GUQ31 using daily streamflow; GUW20 → GUW31 using daily in-situ
water levels; and Envisat-“ungauged” catchments EU101 → EU109 using daily Envisat-derived water level). Each dotted box shows the same “ungauged” catchment
using different datasets (either streamflow GUQ or in-situ water level GUW or Envisat-derived water level EU) correlated with same gauged catchments. Fig. 6a is
correlation matrix of “ungauged” catchment group 3 and Fig. 6b is correlation matrix of “ungauged” catchment group 4 (Table 6). Red color box highlights the most
highly correlated gauged catchments with “ungauged” catchments (r 0.7). For details of the location and name of catchments, see Table S1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Correlation between different precipitation datasets.

Precipitation HydroGFD MSWEP TRMM

MSWEP 0.78
TRMM 0.61 0.85
In-situ Precipitation 0.65 0.75 0.53

Note. Precipitation dataset has the highest correlation with in-situ precipitation
are shown in bold font.
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Nevertheless, the later could significantly reduce volumetric errors of
low flow because only one extra parameter was used in the WWH v1.3
compared to previous model version. Compared to locally calibrated
parameters, physiography and climate-based regionalized parameters

reached nearly 80% in terms of KGE for daily streamflow and was even
a slightly better in terms of volumetric errors for low flow, medium and
high flow.

Fig. 11 shows performance of daily simulated streamflow of all
catchments in terms of KGE compared to their historical observations of
streamflow during validation period (1991 – 2001) for two model
versions, including baseline GM-HYPE v1.0 and final GM-HYPE v1.3.
The catchments presented in Fig. 11 include both gauged catchments
located inside black Vietnamese boundary and “geopolitically un-
gauged” catchments located outside of black Vietnamese boundary.
Most of simulated catchments using the final model version have better
captured hydrological processes of the region, resulting in a substantial
improvement (mostly blue dots in Fig. 11b). In both model versions,
streamflow in Lang Son (located in Bang Giang Ky Cung basin, North-
east of Vietnam, the only yellow dot in Fig. 11b) was not well simu-
lated. The reason could be the underrepresented spatial variation of
precipitation in the catchment owing to the its small size (the smallest
size 1,500 km2 in all evaluated catchments in the study). Future re-
search could be further improved by using the average of the nearest

Fig. 7. Monthly time series of different climate datasets.

Table 8
Model performance using different climate datasets.

Precipitation Temperature KGE Absolute RE
(%)

Absolute RESD
(%)

r

HydroGFD HydroGFD 0.25 16.8 53.55 0.59
HydroGFD NCEP 0.32 22.61 54.75 0.59
MSWEP HydroGFD 0.31 21.57 50.16 0.74
MSWEP NCEP 0.29 19.34 47.59 0.74
TRMM HydroGFD 0.25 25.27 69.15 0.73
TRMM NCEP 0.20 25.56 73.64 0.73

Note. Table presents median performance metrics for 19 gauged Vietnamese
stations. For clarity, in each column, the two best values are shown in bold font
(the highest values (the better) for KGE and r, the smallest values (the better)
for absolute RE and absolute RESD).

Fig. 8. Model performance (all values are median values) of all model versions at gauged stations in both calibration (Fig. 8a) and validation periods (Fig. 8b). Dotted
box for daily flow signatures and dashed box for monthly flow signatures. Color interpretation of the Figure: blue is good and yellow/red/purple is poor performance.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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precipitation grids or higher resolution precipitation datasets like NASA
Global Precipitation Measure integrated multi-satellite retrievals with
0.1° resolution (GPM IMERGF-V6) (Le et al., 2020).

4.6. Model evaluation at ungauged basins using water level based flow
correlation

To evaluate the performance of model at ungauged catchments that
have observed water levels, evaluation framework using water level
based flow correlation (Fig. 4) and existing performance metrics of si-
mulated water levels was used. This section applied the framework and
performance metrics for both baseline and final model versions to ex-
amine if this method and/or performance metrics can work for both
scenarios (Fig. 12 and Fig. 13). Accordingly, firstly, the daily and/or
monthly simulated water levels were evaluated against the recorded
water levels using the existing performance metrics for simulated water
levels, including Pearson’s correlation coefficients, NSEanom and
NSEW. From Fig. 12 and Fig. 13, conflicting performance results of
simulated water levels compared to observed water levels were found.
In any row of both figures, inconsistent colors between r, NSEanom and
NSEW for simulated water levels (especially for Envisat-derived water
level) were shown. For example, from Fig. 12d, at EU_107 station,
Pearson’s correlation coefficient (dark blue color – good result) showed
that simulated water level had good temporal correlation with observed

water levels; NSEanom (blue color – acceptable result) informed that
they had acceptable magnitude bias; NSEW (orange color – bad result)
advised that they had significantly high magnitude bias. Comparing
simulated streamflow of this station with observed streamflow (blue
color of KGE – acceptable result), the model was found to simulate daily
flow at acceptable level but could not capture high flows (light purple
color of Q5 – overestimated) and low flows (yellow color of Q95 –
highly underestimated). This finding confirmed previous studies that
model performance based on only water levels could yield inaccurate
results in modelling streamflow signatures (Lindström, 2016; Jian et al.,
2017). Additionally, unlike water levels that have limited performance
metrics and derived hydrological signatures, there is a high variety of
performance metrics to evaluate various signatures of streamflow that
could help diagnose model problems and inform where to improve. For
example, KGE metric can inform whether temporal pattern or variation
or magnitude of daily flow is not good (Gupta et al., 2009) whereas
relative volumetric errors of flow signatures from flow duration curve
(high, low and medium) can inform which part of runoff (surface or
subsurface runoff) is not well represented (Yokoo and Sivapalan, 2011).
Accordingly, it raised a question how to have extra important model
diagnostic information if only observations of water levels are avail-
able.

Water level based flow correlation was found to possibly address the
above question. Using water level based flow correlation evaluation

Fig. 9. Total hydrograph of simulated streamflow of all model versions against observed streamflow (Fig. 9a), annual hydrograph (Fig. 9b) and flow duration curve of
simulated streamflow of all model versions against observed streamflow (Fig. 9c) at one sample gauged location at Lao Cai (located in Red River basin). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

T.L.T. Du, et al. Journal of Hydrology 588 (2020) 125016

14



framework, firstly, temporal patterns of simulated water levels were
examined against observations using correlation coefficients, which
were all above 0.7 for both model versions (Fig. 12, Fig. 13). Secondly,
modeled correlation between simulated water levels of “ungauged”
catchments and simulated streamflow of gauged catchments were
compared against measured correlation between observed water levels
of “ungauged” catchments and observed streamflow of gauged catch-
ments. The difference between them was within +/- 0.2 for both model
versions, thus the performance of “ungauged” catchments was similar
to the performance of the most highly correlated gauged catchments
(see Figure Supplementary 4). Accordingly, in both baseline and final
model versions, performance of “ungauged” catchments were similar to
performance of the most highly correlated gauged catchments for all
flow signatures. It was then validated with any “ungauged” catchments
that have historical observed streamflow to cross-validate the hypoth-
esis. Consistent results were found for all flow signatures between the
reference most highly correlated gauged catchments and “ungauged”

catchments having observed streamflow (where available for cross-va-
lidation) to accept the hypothesis. For catchments having only Envisat-
derived water level without observed streamflow, its performance
cannot be validated. Nevertheless, since this method worked for both
in-situ water levels and 3 catchments having both Envisat-derived
water level and observed streamflow, performance of the remaining 14
catchments with Envisat-derived water level could be evaluated using
the reference most highly correlated gauged catchments.

Accordingly, it showed that water level based flow correlation
method could be used to evaluate the model performance at ungauged
catchments having only observations of water levels. Furthermore,
compared to previous studies that used water levels to evaluate model
performance, this approach can not only overcome numerical problems
of existing performance metrics for water levels but also provide im-
portant model diagnostic information on how to improve model per-
formance without streamflow observations.

Fig. 10. Model performance by different catchment groups for 19 gauged catchments for calibration (Fig. 10a) and validation (Fig. 10b). Color interpretation of the
Figure: blue is good and yellow/red/purple is poor performance. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 9
Model performance using multiple performance metrics of different flow signatures with various parameter sets for the 12 “geopolitically ungauged” evaluation
catchments for the period 2002 – 2009.

Performance metrics Flow Signatures Par GM-HYPE v1.2
(section 4.4.3)

Par GM-HYPE v1.3
(section 4.4.4)

Par WWH v1.3 (global regionalization
parameters)

Locally calibrated
parameters

KGE QDD 0.68 0.68 0.32 0.88
RE QDD −1.3 −1.7 −61 1
KGE QMM 0.76 0.76 0.21 0.87
RE QMM −1.3 −1.7 −61 0.99
RE Q95 −32.35 −10.6 −98.17 −14.12
RE Q5 −4.43 4.06 −48.23 6.45
RE Q50 1.54 4.51 −80.82 10.61
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5. Discussion

5.1. Step-wise physiography and climate-based regionalization at gauged
basins

Catchment models are important tools to support decision makers in
sustainable planning of water resources. The Greater Mekong region is
the top global biodiversity hotspot but increasingly facing urgent socio-
economic development and climate change impacts. Accordingly, it is
imperative to have a multi-national and multi-catchment model to
support river basin authorities. It could thus help predict river flows
across administrative borders and allocate water resources among
water users in a harmonized manner. For the first time, a multi-national
and multi-catchment Greater Mekong HYPE was set up in this im-
portant region. The analysis of the final model GM-HYPE v1.3 version
(KGE of daily and monthly streamflow is 0.7 and 0.8 respectively)
shows that the model is useful for water authorities in managing water
related issues. The model has been setup on the foundation of the
World-Wide HYPE model and successfully refined to capture the hy-
drological processes for the region. It shows that global hydrological

model, in this case the World-Wide HYPE model, could be a useful
starting point as a time-saving alternative for other regions to further
refine it with local expert knowledge, so that it could be useful in
supporting decision makers for water management. Additionally, fur-
ther refining an existing model would allow critical knowledge and
experiences shared between research groups and practitioners, thus
increasing full transparency in the research process, further under-
standing of general hydrological patterns, process and functions be-
tween catchments. It can thus ultimately advance hydrological sciences
toward a unified theory of hydrology at catchment scale (Sivapalan,
2005) and better predict flow signatures at ungauged basins (Blöschl
et al., 2013).

The approach of sequentially and iteratively (both automatically
and manually) refining inadequately described hydrological processes,
together with local knowledge can substantially improve the appro-
priateness of model application in a new region. Calibration is in-
evitable in process-based distributed model because of impossibility to
measure all required model parameters at the model simulation scale
(Beven, 1989; Blöschl and Sivapalan, 1995). This study combined both
automatic and manual calibration to combine the strengths of both

Fig. 11. Spatial overview of the model performance for GM-HYPE v1.0 (Fig. 11a), GM-HYPE v1.3 (Fig. 11b) and their changes from GM-HYEPE v1.0 to GM-HYPE
v1.3 (Fig. 11c) in terms of KGE for daily streamflow time series. Model performance for both gauged (inside boundary of Vietnam) and “ungauged” catchments for
validation periods (1991–2001). See Figure Supplementary 3 for model performance of simulated low flows and high flows.
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methods to achieve more physically acceptable parameters at a timely
efficient manner at each step in hydrological processes. The study area
has various seasonal water variability due to its substantial precipita-
tion and evaporation variability from tropical monsoon effect. There-
fore, using climatic indexes (aridity index and seasonality index) is a
useful approach to group catchments so that all catchments can be si-
mulated in the same modeling domain. Adding one simple step (step 4
in the step-wise calibration approach in Section 3.4) into the common
step-wise physiography-based parameters helped reduce the under-
estimation of low flow of two catchment groups. In this study, simple
regionalized parameter approach (correction parameters) were used.
More substantial model improvement could be made if other re-
gionalization approaches could be employed, such as linear parameter
estimation based on catchment descriptors (Hundecha et al., 2016).
Future studies could examine this hypothesis.

5.2. Performance of regionalized parameters at ungauged basins

HYPE with physiography and climate based regionalized para-
meters appears to perform as good as locally calibrated parameters and
outperform global regionalization parameters in all flow signatures.
This result confirms findings of the previous studies that similarity in
catchment characteristics and climate characteristics can lead to simi-
larity in rainfall-runoff responses (Beck et al., 2016; Berghuijs et al.,
2014). Climatic indexes based on observations of precipitation and
temperature during the same period with observations of streamflow

could provide more dynamically agreeing characteristics of each
catchment rather than using Köppen climate classification, which has
different timeline with streamflow observation (Kottek et al., 2006).
The evaluated catchments are all vegetated (either forest or agricultural
lands) catchments so the difference in physiography is not significant.
Nevertheless, physiography-based regionalized parameters are demon-
strated to predict well flow signatures in ungauged basins across Europe
(Donnelly et al., 2016). This approach could be helpful for existing
model using physiography-based regionalized parameters to be further
improved without altering the current parameter sets. Since this is a
poorly-gauged region, obtaining more streamflow observations would
be challenging. Therefore, it is important to develop more approaches
to validate the simulated streamflow from model for ungauged catch-
ments. The next section is one of those attempts. Another approach to
cross-validate simulated streamflow for ungauged catchments could be
using ensemble learning regression combining satellite altimetry data
and a hydrologic model, which could be HYPE model in this case (Kim
et al., 2019c).

5.3. Model evaluation at ungauged basins using water level based flow
correlation

To evaluate model performance at ungauged basins, both existing
performance metrics of water levels and proposed water level based
flow correlation were adopted. Inconsistent and even conflicting per-
formance results using different performance metrics happened for both

Fig. 12. Evaluation of the baseline model GM-HYPE v1.0 for “geopolitically ungauged” catchment group 3 (Fig. 12a), “geopolitically ungauged” catchment group 4
(Fig. 12b), Envisat-“ungauged” catchment group 3 (Fig. 12c) and Envisat-“ungauged” catchment group 4 (Fig. 12d). Simulated water levels were evaluated against
in-situ water level (left images) and Envisat-derived water level (right images). Since modeled correlation was similar to measured correlation, simulated streamflow
of “geopolitically ungauged” or Envisat-“ungauged” catchments were similar to that of the reference most highly correlated gauged catchments (red highlight box).
This simulation was then validated against observed streamflow for any “ungauged” catchments that have historical observations (observed streamflow of “un-
gauged” catchments were only used for cross-validation, not used in calibration). For the reference most highly correlated gauged catchment 4, there were 4
catchments, thus both minimum and maximum performance metrics were presented. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).
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baseline and final models, which make diagnosing and evaluating the
model at ungauged basins difficult (Figs. 12 and 13). Meanwhile, using
water level based flow correlation method (both in-situ and Envisat
derived water levels) can provide more details regarding model diag-
nostics of which signature needs to be further refined. For instance, in
the baseline model (Fig. 12), using the performance of the reference
most highly correlated gauged catchments, it informed that model
could not capture low flow for both catchment group 3 and catchment
group 4. For this study, the threshold for identifying the most correla-
tion catchments were only 0.7 because of limited ground observations.
Data access in this region is particularly arduous, therefore correlation
threshold was lower than other studies (Archfield and Vogel, 2010;
Betterle et al., 2017; Betterle et al., 2019). Lower correlation threshold
could have reduced the matching performance between the reference
most highly correlated gauged catchments and “ungauged” catchments
although the difference is not significant. Future research could further
examine this hypothesis. Findings show that flow correlation method
with in-situ water level can be used to evaluate the performance of
ungauged catchments through the most highly correlated gauged
catchments. For Envisat-derived water level, since there are only three
virtual stations located in catchments having ground observations,
three out of 17 Envisat-“ungauged” catchments have been validated.
Nevertheless, since this method was found to work with both in-situ
water level and three Envisat virtual stations, it is assumed that the
remaining 14 Envisat-“ungauged” catchments could have similar

satisfactory simulation to the reference gauged catchments.
It is expected that not only sub-continental multi-catchment hy-

drological models but also multi-continental multi-catchment hydro-
logical models would benefit from this approach if water level-based
flow correlation was found between altimetry-derived water level in
ungauged catchments of a poorly gauged continent and streamflow in
gauged catchments of another excessively gauged continent. For in-
stance, if the study area of GM-HYPE v1.3 could be extended, along
with water level based flow correlation,the performance of the current
non-validated catchment group 2 of model could be validated.
Meanwhile, global-scale model could more satisfactorily capture the
full range of variability of hydrological regimes that actually exist
within their large domains. Thus, it can further increase the ability of
hydrological models to be employed routinely and with confidence in
ungauged basins. More altimetry satellite missions with denser cov-
erage in the future could further advance this approach to improve
predictions of flow regimes in ungauged basins.

6. Conclusion

The study uses a novel approach to combine regionalization and
satellite observations of various hydrological variable to improve pre-
diction of streamflow signatures at “geopolitically ungauged” basins.
Using the proposed step-wise physiography and climate-based re-
gionalization approach, the model performance at ungauged basins

Fig. 13. Evaluation of the final model GM-HYPE v1.3 for “geopolitically ungauged” catchment group 3 (Fig. 13a), “geopolitically ungauged” catchment group 4
(Fig. 13b), Envisat-“ungauged” catchment group 3 (Fig. 13c) and Envisat-“ungauged” catchment group 4 (Fig. 13d). Simulated water levels were evaluated against
in-situ water level (left images) and Envisat-derived water level (right images). Since modeled correlation was similar to measured correlation, simulated streamflow
of “geopolitically ungauged” or Envisat-“ungauged” catchments were similar to that of the reference most highly correlated gauged catchments (red highlight box).
This simulation was then validated against observed streamflow for any “ungauged” catchments that have historical observations (observed streamflow of “un-
gauged” catchments were only used for cross-validation, not used in calibration). For the reference most highly correlated gauged catchment 4, there were 4
catchments, thus both minimum and maximum performance metrics were presented. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).
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reached 80% of performance of the ideal situation, where observed
streamflow data were available for calibration, and significantly out-
performed the global regionalization parameters using the Köppen cli-
mate classification. This approach would be helpful for both new model
setup and existing process-based distributed models because it is flex-
ible and does not change the current parameter values of existing
models. Additionally, the proposed water level based flow correlation
was found to help diagnose models and outperform the existing per-
formance metrics of simulated water levels at ungauged basins. It is
expected that more satellite altimetry missions with a denser coverage
in the future, together with macroscale hydrological model, either at
continental scale or global scale with a wide variety of observed
streamflow patterns (Alemaw and Chaoka, 2003; Arheimer et al., 2020;
Beck et al., 2016; Döll et al., 2003) could benefit from this approach to
further evaluate model performance in ungauged basins.

The study also helps to setup the first multi-national, multi-catch-
ment hydrological model in the Greater Mekong region, the top global
biodiversity and major disaster risk hotspot in the world. This model
version would be useful for water authorities to monitor and plan
sustainable use of water resources across administrative boundaries
under rapid changing development activities and climate impacts.
Using a common hydrological model concept and setup approach
compared to the global hydrological model would allow critical sharing
of knowledge and experiences to advance toward a unified theory of
hydrology at catchment scale and better predict flow signatures at
ungauged basins. Nevertheless, knowledge gaps in aquifers, floodplain
effect, and water extraction by human have not been addressed. Future
model version could be further improved, such as using average of the
nearest precipitation grids (for better reproducing regimes in small
catchments), incorporating other hydrological data (e.g. groundwater
level, total terrestrial storage change, soil moisture), and adding water
management modules (e.g. regulated reservoirs, irrigation, water
quality) to explore impacts of various changing scenarios from climate
and human activities on the vital water, food and energy security in the
region. Web data portal could be developed to allow more data accesses
and knowledge sharing of water status in this important region
(McDonald et al., 2019; Biswas and Hossain, 2018).
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